Cost-Sensitive Learning to Rank

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning to Rank with Nonsmooth Cost Functions

The quality measures used in information retrieval are particularly difficult to optimize directly, since they depend on the model scores only through the sorted order of the documents returned for a given query. Thus, the derivatives of the cost with respect to the model parameters are either zero, or are undefined. In this paper, we propose a class of simple, flexible algorithms, called Lambd...

متن کامل

Effective Learning to Rank Persian Web Content

Persian language is one of the most widely used languages in the Web environment. Hence, the Persian Web includes invaluable information that is required to be retrieved effectively. Similar to other languages, ranking algorithms for the Persian Web content, deal with different challenges, such as applicability issues in real-world situations as well as the lack of user modeling. CF-Rank, as a ...

متن کامل

Cost-Sensitive Reinforcement Learning

We introduce cost-sensitive regression as a way to introduce information obtained by planning as background knowledge into a relational reinforcement learning algorithm. By offering a trade-off between using knowledge rich, but computationally expensive knowledge resulting from planning like approaches such as minimax search and computationally cheap, but possibly incorrect generalizations, the...

متن کامل

Active Cost-Sensitive Learning

For many classification tasks a large number of instances available for training are unlabeled and the cost associated with the labeling process varies over the input space. Meanwhile, virtually all these problems require classifiers that minimize a nonuniform loss function associated with the classification decisions (rather than the accuracy or number of errors). For example, to train pattern...

متن کامل

Spatially Cost-Sensitive Active Learning

In active learning, one attempts to maximize classifier performance for a given number of labeled training points by allowing the active learning algorithm to choose which points should be labeled. Typically, when the active learner requests labels for the selected points, it assumes that all points require the same amount of effort to label and that the cost of labeling a point is independent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence

سال: 2019

ISSN: 2374-3468,2159-5399

DOI: 10.1609/aaai.v33i01.33014570